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Reconfigurable transputer networks: practical concurrent computation

By A. J. G. HEvy
Department of Electronics and Computer Science, The University, Southampton, SO9 5NH, U.K.

Y 4

The architecture of a reconfigurable multitransputer machine capable of a gigaflop
(10° floating point operations per second) performance will be described in some
detail. Problems in efficiently coding such a distributed memory MiMp (multiple
instruction multiple data) machine are also discussed. These problems will be
illustrated with reference to some practical strategies for exploiting different types of
parallelism present in many scientific and engineering problems. Some examples will
be discussed in detail.
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1. INTRODUCTION

Programming a scientific or an engineering problem on a conventional ‘Von Neumann’
computer with only one cpu (central processing unit) requires the problem to be forced into
a sequential mould. The sequential nature of the solution is also reflected in the choice of
programming language, usually one of the older imperative languages such as FORTRAN, C or
pascAL. None the less, it is evident that many, if not most, real-life engineering problems possess
a natural parallelism which would allow many subtasks to be performed concurrently. Solving
such problems with parallel multiprocessor computers will free us from the sequential straight-
jacket and is clearly possible in principle. It does, however, require us to ‘unlearn’ our
sequential programming strategies and use new (or extended) programmlng languages. Why
should we bother? :

The benefits of a parallel approach to problems are not only the dramatic reduction of
hardware costs per megaflop (10° floating point operations per second) but also the potential
for constructing massively parallel machines with a computing power far in excess of that
achievable by conventional vector supercomputer technology. For example, one of the well-
known supercomputer problems is computational fluid dynamics. In aircraft design, computer
programs are required to calculate the airflow round the aircraft for a wide range of
parameters. Rather than attempt a full solution of the Navier—Stokes equations, simplified flow
codes incorporating approximations to these equations are used, which themselves require
many hours of supercomputer time for each parameter setting. A full solution to the
Navier-Stokes equations over a wide range of Reynolds numbers, and for changing aircraft
configurations, is out of reach of present (and foreseeable) vector supercomputers. Performance
in the teraflop (10'* floating point operations per second) range can only be achieved by using
massively parallel machines.

Besides such examples of massive parallelism, the next few years will also see parallel
hardware available on a more everyday basis. Powerful engineering workstations capable of
present-day ‘supercomputer’ performance will soon come on the market and these will
incorporate parallel hardware allowing real-time 3D graphics displays. The ability to visualize
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solutions to complex systems of equations and see how the form of the solutions vary as
parameters or conditions are changed will soon become an indispensable tool of all scientists
and designers.

2. PARALLEL PROGRAMMING

Programming multiprocessor machines presents new problems to the programmer. To
highlight some of these problems and illustrate several useful paradigms for parallel processing
we shall begin with a very simple example: ‘Fox’s Wall’ (Fox & Messina 1987). Consider the
problem of building the wall shown in figure 1. If one bricklayer takes 7 hours to complete the
task, how long will it take four bricklayers? As is obvious to everybody, the answer will not be
1T With four people working on one wall there is an organizational problem to ensure that
they work together constructively and do not get in each other’s way. Let us consider several
different ways in which we might organize this task; each method will have a direct analogy
with real parallel programming problems.

Ficure 1. Fox’s wall.

(a) Pipeline solution

The problem ‘domain’ is divided horizontally and each bricklayer assigned one row of
bricks. They can now all work on the wall, but the efficiency will be less than 1009, because
the higher rows cannot be started until after the lower rows (figure 2). This solution illustrates
the overheads incurred in filling and emptying a vector pipeline on vector machines: only if
the wall is long enough, so that all of the bricklayers can be working most of the time, will this
be an efficient method of parallelizing the problem.

4
3 -
2
1

-

Fiure 2. Pipeline solution to Fox’s wall.

(b) Geometric solution

Divide the wall up into vertical sections and assign each bricklayer one section. All workers
can start at the same time but now they have the problem of synchronizing their work at the
joins of the sections (figure 3). Not until the neighbours have communicated the fact that the
joining bricks on the row below have been laid, can the next layer be laid. In addition to this


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

RECONFIGURABLE TRANSPUTER NETWORKS 397
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- FIcUurE 3. Geometric solution to Fox’s wall.

commutucatlon and synchronization overhead there is also a requlrement for a goocl load
balance to obtain a high efficiency. In the example shown in figure 3, there i is clearly a
significant inefficiency due to an uneven load distribution.

() Farm' solution

In the ‘farm’ solution, bricks and cement are not assigned to each bricklayer independently
but kept in a central resource. Each bricklayer then picks up a brick and cement, takes them
to the wall and lays them in the next available position (figure 4). Once again there will be
inefficiencies due to startup and finishing, but such a method is clcarly capable of achieving
high efficiency on an appropriate problem. '

o o R
o

bricks i v cement

Ficure 4. Farm solution to Fox’s wall.

Although we have illustrated these three paradigms in a very simple context, the same
techniques are found to be commonly applicable to the problem of parallelizing scientific
problems for multiprocessor machines. There is, however, one other type of parallelism that
will be relevant to our discussion of transputer-based machines. This I will illustrate with a
‘Feynman story’ (Feynman 1985). During the Manhattan project to develop: the atomic
bomb, Feynman was given direction of the ‘IBM’ team who were required to perform very
complex calculations on the effect of cavity shape on the amount of energy released. This was
before the days of electronic computers and the name IBM referred to their adding machines,
multipliers, card punches and so on. Before Feynman took over management of the team, three
problems had taken nine months to complete. Feynman raised this rate to nine problems in
three months by using ‘pipelining’: it was possible for several different jobs to be processed at
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the same time. This success, however, only led to further problems. The management now
assumed that each job took § month and demanded the results of a vital calculation within one
month! Feynman then had to solve the much more difficult problem of parallelizing a single
problem to meet the deadline. This type of parallelism we shall refer to as ‘algorithmic’
parallelism. The name is meant to imply that the algorithm, not the data, is broken down into
parts that can be performed concurrently. This introductory section concludes with a brief
mention of two new problems that the would-be parallel programmer will encounter: non-
determinacy and deadlock. Consider the simple three-processor system indicated in figure 5.
Processor 3 is programmed to receive inputs from processors 1 and 2 and assign the first input
to a variable called a and the second to variable 4. Processor 1 sends the value 100, say, and
processor 2 the value —1. Because each processor is computing independently on different
data, it may not be possible to determine in advance which result will arrive first and thus
which of the two possibilities (a = 100, b = —1) and (@ = —1, b = 100) is selected. Such non-
determinacy is an inherent property of multiprocessor machines of this type. One needs to be
aware of such potential problems and, if necessary, program around them.

sends ‘+100°
assigns first input to variable ‘a’
&O <« second to ‘¥’
sends ‘—~1’

Figure 5. Non-determinacy example for multiprocessor system.

The most common problem, however, encountered by parallel programmers is undoubtedly
" that of deadlock. This is a situation in which each processor ends up waiting for an input from
another processor so that the whole system hangs up. Techniques for deadlock avoidance and
correct termination of parallel programs soon become a standard part of the parallel
programmer’s armoury. Nevertheless, mere deadlock avoidance does not guarantee an efficient
implementation of a problem. Consider the following variant (Pritchard, personal com-
munication) of Dijkstra’s Dining Philosopher Problem (Hoare 1985). At the famous college,
the five philosophers are all sitting round their circular table having a party. They decide to
play pass-the-parcel, but each has a parcel so if each continues holding a parcel, no one is free
to take ‘a parcel from his neighbour nor can he pass his on: the classic deadlocked situation.
Introduction of a butler between two of the philosophers breaks the deadlock: one parcel is
passed to the butler and this effect ripples round the table. It is immediately clear, however,
that a more efficient implementation can be achieved by introducing five valets. Each can now
receive a parcel, and five parcels can circulate at the same time! Some strategies for deadlock
avoidance are ‘contained in Dathi (1986) and Welch (1987).
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3. TRANSPUTERS AND OCCAM

We shall only be concerned with a summary of the essential elements of the transputer: a
more detailed discussion can be found elsewhere (Homewood ez al. 1987). On a single visI
(very-large-scale integration) chip the Inmos ‘T800’ transputer (figure 6) provides processing
power, memory and communication hardware. The T800 has two processors, one a 32 bit,
10 Mips (million instructions per second) cpu and the other a floating-point coprocessor capable
of 1.6 megaflops performance. The on-chip memory consists of 4 Kbytes of fast, 50 ns static RAM
(random access memory), and the communication hardware comprises four fast 20 Mbit per
second serial links. Both processors and all four links (each in two directions) can operate
concurrently. The transputer hardware makes it easy to construct large and powerful MiMDp
(multiple instruction multiple data) arrays of transputers; just two wires per link are needed
to provide bidirectional, point-to-point communication between transputers and no additional
buffering is required. - ‘

> links

Y

memory interface

Ficure 6. T800 Transputer: layout of main features.

The key question for a user, however, is whether or not such powerful distributed memory
arrays of processors can be easily programmed. In fact, concurrently with the design of the
transputer, Inmos also developed a programming language called occam (Inmos 1988). This
language embodies Hoare’s communicating process model of concurrency (Hoare 1985) and
incorporates communication primitives and concurrency ab initio. Moreover, the features
present in the occam language represent the result of an elegant engineering compromise
between desirability of a given language construct and its ease of implementation in silicon.
The transputer is therefore engineered not only to execute the occam language primitives
efficiently but also to support both simulated concurrency on a single processor as well as a
truly distributed implementation on a network of transputers.

The occaM process model is shown in figure 7. The three sequential processes P1, P2 and P3
can all execute in parallel and communicate with each other via one-way communication
‘channels’. Notice that this model of concurrency is very different from that embodied, for
example, in Ada and in shared-memory multiprocessor machines. Here, there is no shared
memory and variables can only be passed between processes via channels. This has the
advantage of avoiding contention problems and provides a secure and side-effect-free
multiprocessor ‘system’ language.
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o Ficure 7. The occaM process model: sequential processes P1, P2 and P3 and point

— to point communication channels.

NI | . |

2 : In contrast to approaches to parallel programming in which all the parallelism is left implicit
- 5 for the compiler to extract (if it can), occaM requires the programmer to make the parallelism
0O entirely explicit. Thus, for example, the three processes of figure 7 may be run on one transputer
—~w or divided between two or three transputers as indicated in figure 8. The choice between

implementing the multiprocess code on two or three transputers may be dictated by issues such
as load balancing, communication bandwidth or even simple economics!
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Ficure 8. Simulated concurrency or true concurrency: possible distributions of processes P1, P2 and P3.
(2) One transputer; () two transputers; (¢) three transputers.
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4. PRACTICAL METHODOLOGIES

To program multiprocessor machines efficiently it is necessary to have some knowledge of
both the underlying architecture and the basic hardware parameters. In this discussion we
shall restrict ourselves to distributed-memory MiMD computers although some of the issues
raised have more general validity. For such an N-processor machine it is convenient to define
the speedup or efficiency as follows

(time to compute problem on one node)

E= N x (time to compute problem on N nodes)

For conventional multiprocessor machines such as CalTech’s ‘ Cosmic Cube’ and the other
hypercube machines, thlS efficiency formula can be rewrltten in the form (Fox & Otto 1985)

E = calc/ 7‘(’3&[0 + 7:.‘Olllﬂ'l.)
where T, = total calculation time
and T omm = total control and communication time.

The inefficiency is thus seen to be introduced by the additional control and communication
involved in distributing the problem over the N-processing nodes.

Transputer arrays fall into this category of machine with the important proviso that the
transputer hardware allows communication to take place concurrently with computation.
Thus, with only a relatively small increase in code complexity, part of the ‘wasted’
communication time, in which a conventional processor would normally not be able to get on
with useful computation, can be overlapped with useful computation. Thus, for transputer-
based multiprocessor machines we may write

T ;

comm — 7;etup"" 7::overla'l.p’

where 7,,,,, comprises non-overlappable channel set-up and other overheads, and 7,14y
consists of communication time that can be overlapped with calculation. Thus, for transputer

arrays, we expect to be able to achieve higher efficiencies because now

= calc/ [ setup+max( cale? T;verlap)]'

To examine the validity of this (somewhat mmphﬁed) analysis let us look at an explicit
example. We shall also use this and other examples to show the application of the three
programming paradigms of geometric, algorithmic and processor farm parallelism.

We begin by considering a typical grid problem: Laplace’s equation in two dimensions. Our

“analysis will focus on distribution techniques using a simple relaxation method rather than on
a search for the most efficient parallel algorithm. We wish to solve Laplace’s equation

a2
Vig = (a it3 )¢ 0
in a square region with fixed non-zero boundary potentials. The laplacian may be

approximated by finite differences on a uniform grid leading to the Gauss—Jacobi relaxation
algorithm. In an obvious notation the updated field at the grid point (r, m) is given by

é(n,m) = Hp(n+1, m)+P(n—1, m) +¢(n, m+ 1) + ¢(n, m—1)}

corresponding to the update ‘stencil’ shown in figure 9. We now consider both geometric and
algorithmic implementations of this algorithm.
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e o o e X o
o X o = % n e »
e o o o X o

Ficure 9. Update stencil for Laplace’s equation.

(a) Geometric parallelism

__J Each of the N processors is assigned a subregion containing z gridpoints so that the whole
< S domain consists of N Xn points. As is evident from figure 10, the total calculation in each
é —~ subregion is proportional to n, the area of the region, while the communication with
e 5 neighbouring processors to obtain the necessary data to update the edge points is proportional
E 8 to 4/n. Thus we expect Toe ~n, T, ~/n

=w

PHILOSOPHICAL
TRANSACTIONS
OF

Figure 10. Geometric décomposition of Laplace problem.

and, for large enough »n, high efficiency is assured because the » dependence has the form
E~1—4/+/n,

where the coefficient 4 is specific to the particular multiprocessor hardware. As shown by Fox
& Otto, these arguments generalize to higher dimensions and to a surprisingly wide range of
problems (Fox & Otto 1985). We are concerned with a multitransputer implementation of
this ‘domain decomposition’ technique. '

Consider a 4 x 4 array of transputers connected as a regular two-dimensional grid. To map
130 x 130 grid with fixed boundary conditions on to this array, each processor is assigned a
32 x 32 subregion. To examine the effect of overlapping communication with calculation we
mimic the effect of slowing down the communication speed by communicating the data M

times. Writing E=T,,/D(M)
cale

THE ROYAL
SOCIETY

we have, for the non-overlapped case

Dy(M) = MT o+ Togres

comm

and for the overlapped situation

D2 (M) = M’I;etup‘l- max(MT : T::alc)‘

overlap’
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The results are shown in figures 11 and 12. For the non-overlapped case we see the expected
linear dependence on M with slope T, and intercept T_,.. The actual efficiency (when
M = 1) is 929,. With overlapped communications, we see that until M is around 120 the
T yerap term is entirely masked and the slope proportional only to 7. After the turnover
region the slope reverts to 7., as for the non-overlapped case. The efficiency (M = 1) has
now increased to 999, as expected

]‘: \1 v 3
‘ T
=
P <
~ S
S8} g 2
— o
@) .L
O §
v =
5 1
n &
5 £
g 8 7<.:'alt:
&t) 5 L N 1
7)) 0 100 200 300
Z ..
§ amount of communication M
=

Ficure 11. Laplace results: non-overlapped communications.

]
I

9%
(9

time per iteration D,(M)/107s
o
L]

\ slope 7, , up

>_4 Tca!c

= 1 1 1

48} 0 100 200 300

5 amount of communication M

O Ficure 12. Laplace results: overlapped communications.

v
72
Z Although it is gratifying to be able to achieve such high efficiencies and validate the simple
g analysis outlined above, two words of caution are in order. Firstly, it may well be that for
26 purely pragmatic reasons, such as simplicity of code and so on, it is better not to worry about
z extracting every last bit of speedup but rather code the problem more simply and throw more
S transputers at it! Secondly, if the program is written to communicate in all eight directions
[

29 Vol. 326. A


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

404 A.J. G. HEY

simultaneously and another process also needs to access external memory, then external
memory bandwidth becomes a significant limiting factor.

(b) Algorithmic parallelism

In this approach to the problem, the program must be split up into roughly equal ‘size’
pieces. In this case there is a very simple basic algorithm which may be written as

update = }(left+ right+ up + down).

Dividing this up as shown in figure 13 into operations on vectors, two transputers perform
additions on vectors and a third an addition and a multiplication. All these transputers need

L+R
128
/ vector \
memory . answer
128 X 128 - 128
array - vector
. 128 ’
vector

Ficure 13. Algorithmic decomposition of Laplace problem.

little or no external memory: a fourth transputer with substantial external memory keeps the
old and updated versions of the entire array. With four T414 transputers and a 40 x 40 array,
an efficiency of about 50 %, was obtained (Pritchard et al. 1987). Given the relatively poor load
balance between the transputers this lower efficiency is to be expected. Algorithmic networks
for more complex algorithms can be very complicated. Figure 14 shows one such network
constructed by Bryan Carpenter at Southampton for a Monte Carlo simulation of a statistical
mechanical spin system (Askew ef al. 1988). Such networks need not only care with load
balancing but also with deadlock and termination. Efficiencies between 50 and 609, are
typical.

(¢) Hybnd parallelism

For certain applications a combination of geometric and algorithmic parallelism can make
optimal use of the processing power available. This hybrid technique has been successfully used
by Bryan Carpenter to code 1260 16-bit T212 transputers to solve the three-dimensional Ising
ferromagnet (Carpenter 1987). To our knowledge, this is the largest MiMp machine ever
programmed and one that can honestly be described as a 10 Gips (10° instructions per second)
machine! The Ising model simulation can be programmed using several different algorithms
so in table 1 we compare the performance of this ‘B001260° machine against several other
computers by using the same ‘Metropolis algorithm’. As can be seen, this transputer array,
assembled out of standard components over a few days, is faster than a special purpose machine
built at Santa Barbara to solve just this one problem! Moreover, the B001260 achieves almost
a third of the performance of a Cyber supercomputer for a small fraction of the cost. In fact,
as the last column in table 1 shows, the world best performance for the Ising problem using this
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= Q)
: O cenerate UPDATE SITE ENERGY L RANDOM EXPONENTIAL
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SITE ENERGY EXPONENTIAL
(NEW) RANDOM
WORKER

Ficure 14. Algorithm network for Monte Carlo simulation.

TABLE 1. COMPARATIVE PERFORMANCES FOR THE METROPOLIS ALGORITHM FOR
THREE-DIMENSIONAL ISING SYsTEM

Santa - 2-pipe ICL
Barbara B001260 CYBER DAP
update speed/(m s™!) 25 - 27 93 218
4
P a
<, | v
—  algorithm is probably held by the stup ICL DAP machine: the binary nature of the Ising model
; >~ is particularly well suited to the single-bit processing elements of the DAP. For a more floating-
= oint intensive problem, the DAP does not compare so well. Moreover, if the 1260 transputers
= P P p P
&4 —  had more than just the 2 Kbytes of on-chip memory and were more reconfigurable, it is
E 8 probable that at least an order of magnitude improvement in performance could be achieved
Carpenter 1987). :

(d) Processor farm parallelism

There are two basic types of processor farm: one in which the same entire code is held in each
processor, which can then operate on entirely independent sets of data, and one in which
independent pieces of ‘work’ are sent to each processor by a farm controller. They can use
various topologies such as the linear chain or ternary tree shown in figure 15.
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(a)
@ master worker |= === =a - worker
|—
worker  |r—— - -
(4) ~~
@ /
master worker  frmm— - -
S~
|
worker — |re—— - -
~——

Ficure 15. Farming networks: (a) linear chain; () ternary tree.

The mathematical analysis of all such farm types is very similar (Pritchard, 1987). For
example, if one wants to maximize the rate, Sy, at which results are obtained from the end of
an N processor chain, one finds, for

T,

calc

>T

setup

that there is a critical value N, for the largest useful chain. Pritchard quotes the result

1 (Trare = Toorun) |
N<N,:S =___[1_(_calc_set_up_) :
¥ 2 T;etup ( T::alc + T;etup)
1
N> N,;:Sy = .
¥ ch:omm+7;etup

Processor farms also give the opportunity for porting certain types of existing FORTRAN, C or
PASCAL programs with a minimum of effort. For example, we have ported a 3000-line FORTRAN
77 program for Monte Carlo simulation of events generated in electron—positron annihilations
to run on a transputer farm. This program has been implemented on a Meiko system consisting
of up to 30 transputers running in an occaM farming harness (Glendinning & Hey 1987). This
application has very limited communication requirements and a linear speedup was observed.
Comparative figures for this application on a VAX 750, T414 and T800 transputer are shown
in table 2 (Cownie, personal communication).

TABLE 2. COMPARATIVE PERFORMANCES FOR FORTRAN MONTE CARLO PROGRAM

(N is the number of transputers in the farm: up to 30 in these experiments.)

VAX
750 T414 T800
seconds per event 0.18 0.61/N 0.07/N
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5. RECONFIGURABLE TRANSPUTER NETWORKS

Until recently our transputer systems at Southampton have had to be manually connected
in the required topology. When presented with a complex wiring diagram instructing the user
to ‘connect processor 10 link 3 to processor 12 link 0’ and so on, the benefits of a software-
controlled switch seem obvious! For the more sceptical, the advantages of the use of a
reconfigurable network of transputers over implementing applications on some fixed general-
purpose network are threefold. Firstly, it allows us to simulate the performance of a wide range
of hard-wired systems during design ; secondly, direct link connections can be made to optimize
the topology for a specific application; and thirdly, there is the possibility of dynamic
reconfiguration for greater flexibility and dynamic load balancing. We have not yet
investigated dynamic reconfiguration but we have seen definite performance gains with
specifically configured networks rather than hard-wired networks for several specific
applications. In what follows, reconfigurable transputer networks are therefore assumed to be
desirable and the switch design analysis of Lloyd, Nicole and Ward (Lloyd et al. 1988) will
be described. It may turn out that reconfigurability becomes less of an issue for networks with
very large numbers of transputers (although our experience with the B001260 would seem to
indicate otherwise) or for networks of future more powerful transputers with a routing engine
dedicated to the control of the link traffic.

In designing a switch for transputer networks we wish not only to have a ‘universal’ static
switch — universal in the sense that it will allow any valid transputer graph to be realized — but
also to have simple and fast algorithms to translate the desired network topology into the
appropriate switch setting. We begin with a few words of notation. Figure 164 shows a
transputer with 4 links: each link consists of two channels, a to b and b to a. Figure 164 depicts
a switch capable of connecting any pair of input links; figure 16¢ shows a switch that can
connect any link on one side to any link on the other side of the switch.

Consider the example of transputers with only two links. Figure 17 shows a switching
network that is nof universal: only disconnected graphs with even numbers of transputers can
be configured (figure 18). In contrast we see that figure 19 shows a universal switch, allowing
any number of transputers in the disconnected subgraphs (figure 20).

(@) ' 0) (c) ]

FicurE 16. (a) 4-link transputer. (6) Switch for any pair of inputs.
(¢) Switch for any input to any output link.

2929979¢

" Ficure 17. Non-universal switching network for two-link transputers.
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TRTATAT,

Ficure 18. Disconnected graph allowed by switch of figure 17.

Y 4

4'8

: Ficure 19. Universal switching network for two-link transputers.

|

O

W
%
4 ,
o .
= Ficure 20. Disconnected graph allowed by switch of figure 19.
%}
20
z
< In analysing transputer networks there are two types of cycles that are of relevance:
= hamiltonian cycles and eulerian cycles. A hamiltonian cycle is a closed path that visits each

vertex (transputer) exactly once. It is well known that there are many graphs that do not
possess hamiltonian cycles. Some examples are shown in figure 21. Moreover, it is a
computationally difficult problem to determine whether an arbitrary graph has one or more
hamiltonian cycles. It is therefore inadvisable to base a reconfigurable transputer network on
a switching network containing a fixed spine of links like that shown in figure 22. Such a switch
cannot be universal.

(a) (8)

Y o
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w Ficure 21. Simple networks with -no hamiltonian cycles.
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Ficure 22. Non-universal switching network.
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An eulerian cycle is a closed path that visits each edge (link) exactly once and, for
transputers, visits each vertex exactly twice. Such cycles are possessed by all transputer
networks. Furthermore, such cycles are easy to construct and can be used to decompose a given
transputer graph into two subgraphs, each with the same number of vertices but with only two
links per transputer (figure 23). Because we alrcady know how to construct a universal two link
switch, we can assign one of these for the E-W links and another for the N-S links to obtain

a truly universal static four link switch, This analysis forms the basis for the switch design in
the RTP supernode machine being built in ESPRIT project P1085 (Lloyd et al. 1988).

FIGURE 23 Eulenan cycle analysls of a transputer network (a) The network
(b) eulenan cycle (¢) two-lmk subgraph decomposition.

6. CONCLUSIONS o

It is clear that transputer networks with occAm as a system programming language can
constitute the basis of very versatile and powerful MmiMp parallel computers. However, it is also
equally clear that most applications programmers desire better software tools and the provision
of high-level languages and ‘smart’ compilers. These, I believe, will come although it is
obviously going to be some years before parallel hardware can truly claim to be able to provide
general-purpose, high-performance computing accessible to all. Nevertheless, even with the
present level of software development, I hope that I have demonstrated that reconfigurable
transputer networks can already provide powerful and cost-effective machines for concurrent
computation that can be programmed safely and efficiently.

I am grateful for the help and advice of the following members of the Concurrent
Computation Group at Southampton: James Allwright, Charles Askew, Bryan Carpenter,
Paul Coddington, Ian Glendinning, Andrew Hislop, Andrew Jackson, John Merlin, Denis
Nicole and David Pritchard. I am also grateful to Inmos and ESPRIT for providing us with
the wherewithal to perform this research.
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Discussion

D. MAy (Inmos Limited, Almondsbury, Bristol). I have been asked to comment on Professor Hey’s
remarks about reconfigurable machines, as they seem to differ from the views expressed in my
own paper.

A general-purpose concurrent computer must provide a simple way for programs to be
mapped on to the physical architecture of the computer. Indeed, this mapping must be
achieved automatically if portable software packages are to be written for such machines. In
my view, the successful exploitation of concurrent computers now depends more upon
achieving software portability than upon any other single factor.

Obviously, the current generation of transputers and similar machines requires that, in
many cases, the algorithm is designed to suit a particular configuration. This is satisfactory for
embedded applications, where the configuration can be determined by the application. It is
obviously unsatisfactory for a general-purpose computer. Consequently, some concurrent
computers include switches allowing the configuration to be programmed to suit a particular
application.

Reconfigurable machines vary in the configurations they can implement. Indeed, some
reconfigurable machines do not permit all possible configurations to be achieved. This is not
particularly surprising, as for machines with many processors the interconnect needed would
be very large. Consequently, these machines do not overcome the problem of software
portability.

In the very near future, it will be possible to provide hardware support for message routing
in each of the processing nodes. This will remove the need for reconfiguration in all but very-
high-performance applications. It will also allow the construction of very large machines
without excessive amounts of interconnection. Finally, and most importantly, it will allow any

software configuration to be implemented directly on any machine with adequate hardware
resources.
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